首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A permeability change of myelin membrane vesicles towards cations is induced by MgATP but not by phosphorylation of myelin basic protein
Authors:Claude Wüthrich  Andreas J Steck
Institution:Department of Neurology, University of Lausanne, Lausanne, and Swiss Institute for Experimental Cancer Research, 1066 Epalinges Switzerland
Abstract:The existence of an endogenous protein kinase activity and protein phosphatase activity in myelin membrane from mammalian brain has now been well established. We found that under all conditions tested the myelin basic protein is almost the only substrate of the endogenous protein kinase in myelin of bovine brain. The protein kinase activity is stimulated by Ca2+ in the micromolar range. Optimal activity is reached at a free Ca2+ concentration of about 2 μM. Myelin membrane vesicles were prepared and then shown to be sealed by a light-scattering technique. After preloading with 45Ca2+, 86Rb+, or 22Na+, the self-diffusion (passive outflux) of these ions from myelin membrane vesicles was measured. Ionophores induced a rapid, concentration-dependent outflux of 80–90% of the cations, indicating that only a small fraction of the trapped ions was membrane bound. There was no difference in the diffusion rates of the three cations whether phosphorylated (about 1 mol phosphate per myelin basic protein) or non-phosphorylated vesicles were tested. In contrast, a small but significant decrease in permeability for Rb+ and Na+ was measured, when the vesicles were pretreated with ATP and Mg2+.
Keywords:Myelin  Membrane vesicle  Protein kinase  MgATP  Permeability change  Cation  Phosphorylation  EGTA
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号