首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell Membrane Diversity in Noncovalent Protein Transduction
Authors:Betty Revon Liu  Jyh-Ching Chou  Han-Jung Lee
Institution:(1) Department of Life Science, National Dong Hwa University, Hualien, 97401, Taiwan
Abstract:Crossing of the plasma membrane for all macromolecules without energy, receptors or any artificial methods was thought to be difficult. Our previous studies demonstrated that arginine-rich intracellular delivery (AID) peptides are able to deliver macromolecules, such as proteins, RNAs and DNAs, into either animal or plant cells. Cellular internalization could be mediated by effective and nontoxic AID peptides in either a covalent or noncovalent protein transduction (NPT) manner. AID peptides were so versatile that the procedure seemed to replace the current artificial transfection methods. However, the utilization of AID peptides has been limited to animal or plant systems so far. None has proposed that AID peptides could work in other species. Here, we select some representative organisms to screen whether NPT mediated by AID peptides works in them. They include cyanobacteria, bacteria, archaea, algae, fungi and yeasts. The results reveal that not all living beings possess this capability of protein transduction. Interestingly, all species of prokaryotes tested, which were thought to be highly diverse from the animal and plant systems, appear to be capable of NPT. The mechanism of AID-mediated NPT in cyanobacteria is in a classical endocytosis- and energy-independent pathway and may involve macropinocytosis. In contrast, green algae and multicellular fungi of the eukaryotes are impermeable to protein passage. Our results bring an interesting clue to the reexamination of the phylogeny of both algae and fungi.
Keywords:Cell penetrating peptide  Cellular internalization  Macropinocytosis  Phylogeny  Protein transduction domain
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号