首页 | 本学科首页   官方微博 | 高级检索  
     


Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity
Authors:Dubowchik Gene M  Firestone Raymond A  Padilla Linda  Willner David  Hofstead Sandra J  Mosure Kathleen  Knipe Jay O  Lasch Shirley J  Trail Pamela A
Affiliation:Bristol-Myers Squibb Pharmaceutical Research Institute, P.O. Box 5100, Wallingford, Connecticut 06492, USA. Gene.Dubowchik@bms.com
Abstract:The anticancer drug doxorubicin (DOX) has been linked to chimeric BR96, an internalizing monoclonal antibody that binds to a Lewis(y)-related, tumor-associated antigen, through two lysosomally cleavable dipeptides, Phe-Lys and Val-Cit, giving immunoconjugates 72 and 73. A self-immolative p-aminobenzyloxycarbonyl (PABC) spacer between the dipeptides and the DOX was required for rapid and quantitative generation of free drug. DOX release from model substrate Z-Phe-Lys-PABC-DOX 49 was 30-fold faster than from Z-Val-Cit-PABC-DOX 42 with the cysteine protease cathepsin B alone, but rates were identical in a rat liver lysosomal preparation suggesting the participation of more than one enzyme. Conjugates 72 and 73 showed rapid and near quantitative drug release with cathepsin B and in a lysosomal preparation, while demonstrating excellent stability in human plasma. Against tumor cell lines with varying levels of BR96 expression, both conjugates showed potent, antigen-specific cytotoxic activity, suggesting that they will be effective in delivering DOX selectively to antigen-expressing carcinomas.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号