首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential CD3 zeta phosphorylation is not required for the induction of T cell antagonism by altered peptide ligands.
Authors:H Liu  D A Vignali
Institution:Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
Abstract:T cells recognize foreign Ags in the form of short peptides bound to MHC molecules. Ligation of the TCR:CD3 complex gives rise to the generation of two tyrosine-phosphorylated forms of the CD3 zeta-chain, pp21 and pp23. Replacement of residues in MHC-bound peptides that alter its recognition by the TCR can generate altered peptide ligands (APL) that antagonize T cell responses to the original agonist peptide, leading to altered T cell function and anergy. This biological process has been linked to differential CD3zeta phosphorylation and generation of only the pp21 phospho-species. Here, we show that T cells expressing CD3zeta mutants, which cannot be phosphorylated, exhibit a 5-fold reduction in IL-2 production and a 30-fold reduction in sensitivity following stimulation with an agonist peptide. However, these T cells are still strongly antagonized by APL. These data demonstrate that: 1) the threshold required for an APL to block a response is much lower than for an agonist peptide to induce a response, 2) CD3zeta is required for full agonist but not antagonist responses, and 3) differential CD3zeta phosphorylation is not a prerequisite for T cell antagonism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号