Xenopus laevis Egg Jelly Contains Small Proteins That Are Essential to Fertilization |
| |
Authors: | John H. Olson Douglas E. Chandler |
| |
Affiliation: | Department of Biology and the Program in Molecular and Cellular Biology, Arizona State University, Tempe, Arizona, 85287-1501 |
| |
Abstract: | The eggs of Xenopus laevis are surrounded by investment layers of egg jelly that interact with the sperm immediately prior to fertilization. Components of these egg jelly layers are necessary for the fertilization of the egg by incoming sperm. Eggs which are stripped of their jelly layers are refractile to fertilization by sperm, but the addition of solubilized jelly promotes fertilization. We have shown previously that the egg jelly layers are composed of a fibrous network of glycoconjugates which loosely hold smaller diffusible components. Extracts of these diffusible components were prepared by incubation of freshly ovulated eggs in high-salt buffers for 12 h at 4°C. This diffusible component extract, when incubated with sperm, promoted the sperm's ability to fertilize dejellied eggs in a dose-dependent manner. In contrast, the high-molecular-weight “structural” glycoconjugates of jelly that remain after extraction of the diffusible components did not increase fertilization efficiency of dejellied eggs nor did nonspecific proteins, carbohydrate polymers, or organic polymers. The diffusible components, analyzed by SDS–PAGE, consisted of a mixture of proteins from 4 to 180 kDa. The protein responsible for fertilization rescue appeared to be <50 kDa and appeared to self-aggregate or to bind to larger proteins. This protein component was required during sperm binding to the egg, its action required an intact egg vitelline envelope, and its action was independent of large soluble polymers such as Ficoll. |
| |
Keywords: | egg jelly fertilization sperm– egg interaction Xenopus laevis. |
本文献已被 ScienceDirect 等数据库收录! |
|