首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhanced cellulolytic enzyme production by the synergism between Trichoderma reesei RUT-C30 and Aspergillus niger NL02 and by the addition of surfactants
Authors:Hao Fang  Chen Zhao  Xiang-Yang Song  Mu Chen  Zheng Chang  Jie Chu
Institution:1562. Department of Biochemical Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
2562. Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
Abstract:Two improvement approaches comprising of a mixed culture of Trichoderma reesei and Aspergillus niger and the addition of surfactants were employed in this study in order to enhance cellulolytic enzyme production as well as to improve the composition. Different delay times of A. niger inoculation (0, 24, and 48 h) and inoculum ratios of T. reesei versus A. niger (1:1 and 5:1) derived six mixed culture forms, which were 0 h/1:1, 0 h/5:1, 24 h/1:1, 24 h/5:1, 48 h/1:1, and 48 h/5:1. It was found that the form 48 h/5:1 allowed the highest FPA, 3.30 ± 0.34 IU/mL, and a relatively high BGA, 1.01 ± 0.25 IU/mL, thereafter being selected for the subsequent improvement step addition of surfactants. Among the three surfactants, including Triton X-100, CHAPS and sodium taurocholate, the third one was found to be the best one giving rise to the highest FPA and BGA, 5.02 ± 0.40 and 1.48 ± 0.28 IU/mL, respectively. Differently sourced cellulases were compared in the enzymatic hydrolysis of steam-exploded corn stover (SECS). Moreover, the cellulase produced by the mixed culture form 48 h/5:1 using SECS as a substrate showed the highest yield at 80.93 ± 2.04%, indicating that the composition of this cellulase was improved by the mixed culture of T. reesei and A. niger. The results validate that these two improvement approaches are efficient and applicable in cellulase production.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号