首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An adenosine 3':5'-monophosphate-adenosine binding protein from mouse liver.
Authors:P M Ueland  S O Doskeland
Abstract:A cyclic AMP-adenosine binding protein from mouse liver has been purified to apparent homogeneity as judged by polyacrylamide gel electrophoresis in the absence and presence of sodium dodecyl sulfate and by analytical ultracentrifugation. The binding protein had a Stokes radium of 48 A based on gel chromatography. Both the purified binding protein and the binding activity in fresh cytosol sedimented as 9 S on sucrose gradient centrifugation. The homogeneous protein had a sedimentation coefficient (S20, w) of 8.8 x 10-13 s, as calculated from sedimentation velocity experiments. By use of the Stokes radius and S20, w', the molecular weight was calculated to be 180,000. The protein was composed of polypeptides having the same molecular weight of 45,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and thus appeared to consist of four subunits of equal size. The isoelectric point, pI = 5.7. The binding capacity for cyclic AMP increased by preincubating the receptor protein in the presence of Mg2+ ATP. This process, tentatively termed activation, was studied in some detail and was shown not be be be accompanied by dissociation, aggregation, or phosphorylation of the binding protein. Cyclic AMP was bound to the protein with an apparent dissociation constant (Kd) of 1.5 x 10-7 M. The binding of cyclic AMP was competitively inhibited by adenosine, AMP, ADP, and ATP whose inhibition constants were 8 x 10-7 M, 1.2X 10-6 M, 1.5 X 10-6 M, and higher than 5 x 10-6 M respectively. A hyperbolic Scatchard plot was obtained for the binding of adenosine to the activated binding protein, indicating more than one site for adenosine. The binding of adenosine to the site with the highest affinity (Kd=2 x 10-7 M) for this nucleoside was not suppressed by excess cyclic AMP and was thus different from the aforementioned cyclic AMP binding site. Cyclic GMP, GMP, guanosine, cyclic IMP, IMP, and inosine did not inhibit the binding of either cyclic AMP or adenosine. The binding protein had no cyclic AMP phosphodiesterase, adenosine deaminase, phosphofructokinase, or protein kinase activities, nor does it inhibit the catalytic subunit of the cyclic AMP-dependent protein kinase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号