Regulation of the synthesis of bacteriophage T4 gene 32 protein |
| |
Authors: | H M Krisch A Bolle R H Epstein |
| |
Affiliation: | Département de Biologie Moléculaire Université de Genève, Geneva, Switzerland |
| |
Abstract: | The synthesis of T4 gene 32 product (P32) has been followed by gel electrophoresis of infected cell lysates. In wild-type infections, its synthesis starts soon after infection and begins to diminish about the time late gene expression commences. The absence of functional P32 results in a marked increase in the amount of the non-functional P32 synthesized. For example, infections of T4 mutants which contain a nonsense mutation in gene 32 produce the nonsense fragment at more than ten times the maximum rate of synthesis of the gene product observed in wild-type infections. All of the temperature-sensitive mutants in gene 32 that were tested also overproduce this product at the non-permissive temperature. This increased synthesis of the non-functional product is recessive, since mixed infections (wild-type, gene 32 nonsense mutant) fail to overproduce the nonsense fragment.Mutations in genes required for late gene expression (genes 33 and 53) as well as some genes required for normal DNA synthesis also result in increased production of P32. The overproduction in such infections is dependent on DNA synthesis; in the absence of DNA synthesis no overproduction occurs. This contrasts with the overproduction resulting from the absence of functional P32 which is not dependent on DNA synthesis.These results are compatible with a model for the regulation of expression of gene 32 in which the synthesis of P32 is either directly or indirectly controlled by its own function. Thus, in the absence of P32 function the expression of this gene is increased as is manifest by the high rate of P32 synthesis. It is further suggested that in infections defective in late gene expression and consequently in the maturation of replicated DNA, the increased P32 production is caused by the large expansion of the DNA pool. This DNA is presumed to compete for active P32 by binding it non-specifically to single-stranded regions, thus reducing the amount of P32 free to block gene 32 expression. Similarly, the aberrant DNA synthesized following infections with mutants in genes 41, 56, 58, 60 and 30, although quantitatively less than that produced in the maturation defective infections, can probably bind large quantities of P32 to single-stranded regions resulting in increased P32 synthesis. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|