首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence that alterations in small molecule permeability are involved in the Clostridium perfringens type A enterotoxin-induced inhibition of macromolecular synthesis in Vero cells
Authors:K I Hulkower  A P Wnek  B A McClane
Affiliation:Department of Microbiology, Biochemistry, and Molecular Biology, University of Pittsburgh School of Medicine, PA 15261.
Abstract:The mechanism by which Clostridium perfringens enterotoxin (CPE) simultaneously inhibits RNA, DNA, and protein synthesis is unknown. In the current study the possible involvement of small molecule permeability alterations in CPE-induced inhibition of macromolecular synthesis was examined. Vero cells CPE-treated in minimal essential medium (MEM) completely ceased net precursor incorporation into RNA and protein within 15 minutes of CPE treatment. However, RNA and protein synthesis continued for at least 30 minutes in Vero cells CPE-treated in buffer (ICIB) approximating intracellular concentrations of most ions. Addition of intracellular concentrations of amino acids to ICIB (ICIB-AA) caused a further small but detectable increase in protein synthesis in CPE-treated cells. ICIB did not affect CPE-specific binding levels or rates. Similar small molecule permeability changes (i.e., 86Rb-release) were observed in cells CPE-treated in either ICIB or in Hanks' balanced salt solution. Collectively these findings suggest that CPE-treatment of cells in ICIB-AA ameliorates CPE-induced changes in intracellular concentrations of ions and amino acids and permits the continuation of RNA and protein synthesis. These results are consistent with and support the hypothesis that permeability alterations for small molecules are involved in the CPE-induced inhibition of precursor incorporation into macromolecules in Vero cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号