首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calculating expected lung deposition of aerosolized administration of AAV vector in human clinical studies
Authors:Leung Kitty  Louca Emily  Munson Keith  Dutzar Benjamin  Anklesaria Pervin  Coates Allan L
Institution:Division of Respiratory Medicine, Hospital for Sick Children, Research Institute, University of Toronto, Toronto, Canada.
Abstract:BACKGROUND: Cystic fibrosis is an autosomal recessive disease affecting approximately 1 in 2500 live births. Introducing the cDNA that codes for normal cystic fibrosis transmembrane conductance regulator (CFTR) to the small airways of the lung could result in restoring the CFTR function. A number of vectors for lung gene therapy have been tried and adeno-associated virus (AAV) vectors offer promise. The vector is delivered to the lung using a breath-actuated jet nebulizer. The purpose of this project was to determine the aerosolized AAV (tgAAVCF) particle size distribution (PSD) in order to calculate target doses for lung delivery. METHODS: A tgAAVCF solution was nebulized using the Pari LC Plus (n = 3), and the PSD was determined by coupling laser diffraction and inertial impaction (NGI) techniques. The NGI allowed for quantification of the tgAAVCF at each stage of impaction, ensuring that rAAV-CFTR vector is present and not empty particles. Applying the results to mathematical algorithms allowed for the calculation of expected pulmonary deposition. RESULTS: The mass median diameter (MMD) for the tgAAVCF was 2.78 +/- 0.43 microm. If the system works ideally and the patient only receives aerosol on inspiration, the patient would receive 47 +/- 0% of the initial dose placed in the nebulizer, with 72 +/- 0.73% of this being deposited beyond the vocal cords. CONCLUSIONS: This technology for categorizing the pulmonary delivery system for lung gene therapy vectors can be adapted for advanced aerosol delivery systems or other vectors.
Keywords:aerosol  lung gene therapy  cystic fibrosis
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号