首页 | 本学科首页   官方微博 | 高级检索  
     


Attenuation of extracellular ATP response in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion
Authors:Saini Harjot K  Elimban Vijayan  Dhalla Naranjan S
Affiliation:Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Ave., Winnipeg, MB, Canada R2H 2A6.
Abstract:Extracellular ATP is known to augment cardiac contractility by increasing intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes; however, the status of ATP-mediated Ca2+ mobilization in hearts undergoing ischemia-reperfusion (I/R) has not been examined previously. In this study, therefore, isolated rat hearts were subjected to 10-30 min of global ischemia and 30 min of reperfusion, and the effect of extracellular ATP on [Ca2+]i was measured in purified cardiomyocytes by fura-2 microfluorometry. Reperfusion for 30 min of 20-min ischemic hearts, unlike 10-min ischemic hearts, revealed a partial depression in cardiac function and ATP-induced increase in [Ca2+]i; no changes in basal [Ca2+]i were evident in 10- or 20-min I/R preparations. On the other hand, reperfusion of 30-min ischemic hearts for 5, 15, or 30 min showed a marked depression in both cardiac function and ATP-induced increase in [Ca2+]i and a dramatic increase in basal [Ca2+]i. The positive inotropic effect of extracellular ATP was attenuated, and the maximal binding characteristics of 35S-labeled adenosine 5'-[gamma-thio]triphosphate with crude membranes from hearts undergoing I/R was decreased. ATP-induced increase in [Ca2+]i in cardiomyocytes was depressed by verapamil and Cibacron Blue in both control and I/R hearts; however, this response in I/R hearts, unlike control hearts, was not affected by ryanodine. I/R-induced alterations in cardiac function and ATP-induced increase in [Ca2+]i were attenuated by treatment with an antioxidant mixture and by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2. The results suggest an impairment of extracellular ATP-induced Ca2+ mobilization in I/R hearts, and this defect appears to be mediated through oxidative stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号