首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Pre-Endosymbiont Hypothesis: A New Perspective on the Origin and Evolution of Mitochondria
Authors:Michael W Gray
Institution:Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3M 4R2, Canada
Abstract:Mitochondrial DNA (mtDNA) is unquestionably the remnant of an α-proteobacterial genome, yet only ∼10%–20% of mitochondrial proteins are demonstrably α-proteobacterial in origin (the “α-proteobacterial component,” or APC). The evolutionary ancestry of the non-α-proteobacterial component (NPC) is obscure and not adequately accounted for in current models of mitochondrial origin. I propose that in the host cell that accommodated an α-proteobacterial endosymbiont, much of the NPC was already present, in the form of a membrane-bound metabolic organelle (the premitochondrion) that compartmentalized many of the non-energy-generating functions of the contemporary mitochondrion. I suggest that this organelle also possessed a protein import system and various ion and small-molecule transporters. In such a scenario, an α-proteobacterial endosymbiont could have been converted relatively directly and rapidly into an energy-generating organelle that incorporated the extant metabolic functions of the premitochondrion. This model (the “pre-endosymbiont hypothesis”) effectively represents a synthesis of previous, contending mitochondrial origin hypotheses, with the bulk of the mitochondrial proteome (much of the NPC) having an endogenous origin and the minority component (the APC) having a xenogenous origin.Considering the central role played in all eukaryotic cells by mitochondria or mitochondrion-related organelles (MROs, such as hydrogenosomes and mitosomes) (Hjort et al. 2010; Shiflett and Johnson 2010; Müller et al. 2012), the question of the origin and subsequent evolution of the mitochondrion has long captivated and challenged biologists. In a recent article in this series (Gray 2012), I discussed in detail several aspects of mitochondrial evolution, focusing particularly on how well the accumulating molecular data can be accommodated in current models of mitochondrial origin. In this context, the origin and evolution of the mitochondrial proteome, as opposed to the origin and evolution of the mitochondrial genome, were examined from the perspective of comparative mitochondrial proteomics. Somewhat disconcertingly, as more data have become available, we find ourselves considerably less certain about key aspects of how mitochondria originated than we were (or thought we were) several decades ago.Here, I summarize key points discussed in more detail in the previous article before presenting a novel perspective on how the mitochondrion might have originated. The new model proposed here, which represents a synthesis of both endogenous (“origin from within”) and xenogenous (“origin from outside”) modes, is advanced in an attempt to account for the inability of a purely endosymbiotic model, whose strongest support has come from studies of the mitochondrial genome, to adequately accommodate data on the mitochondrial proteome.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号