首页 | 本学科首页   官方微博 | 高级检索  
     


Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation
Authors:Zeyu Wang  Guanhua Su  Ziyu Dai  Ming Meng  Hao Zhang  Fan Fan  Zhengzheng Liu  Longbo Zhang  Nathaniel Weygant  Fengqiong He  Ning Fang  Liyang Zhang  Quan Cheng
Abstract:ObjectivesCircadian rhythm controls complicated physiological activities in organisms. Circadian clock genes have been related to tumour progression, but its role in glioma is unknown. Therefore, we explored the relationship between dysregulated circadian clock genes and glioma progression.Materials and MethodsSamples were divided into different groups based on circadian clock gene expression in training dataset (n = 672) and we verified the results in other four validating datasets (n = 1570). The GO and GSEA enrichment analysis were conducted to explore potential mechanism of how circadian clock genes affected glioma progression. The single‐cell RNA‐Seq analysis was conducted to verified previous results. The immune landscape was evaluated by the ssGSEA and CIBERSORT algorithm. Cell proliferation and viability were confirmed by the CCK8 assay, colony‐forming assay and flow cytometry.ResultsThe cluster and risk model based on circadian clock gene expression can predict survival outcome. Samples were scoring by the least absolute shrinkage and selection operator regression analysis, and high scoring tumour was associated with worse survival outcome. Samples in high‐risk group manifested higher activation of immune pathway and cell cycle. Tumour immune landscape suggested high‐risk tumour infiltrated more immunocytes and more sensitivity to immunotherapy. Interfering TIMELESS expression affected circadian clock gene expression, inhibited tumour cell proliferation and arrested cell cycle at the G0/G1 phase.ConclusionsDysregulated circadian clock gene expression can affect glioma progression by affecting tumour immune landscape and cell cycle. The risk model can predict glioma survival outcome, and this model can also be applied to pan‐cancer.
Keywords:cell cycle   circadian clock genes   glioma   immune infiltration   nomogram
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号