首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ANALYSIS OF NUCLEAR MUTANTS OF CHLAMYDOMONAS DEFICIENT IN THE ACCUMULATION OF SPECIFIC CHLOROPLAST RNAS
Authors:Rochaix  JD  Boudreau  E  Nickelsen  J  Lemaire  S  Vaistij  F  & Goldschmidt-Clermont  M
Institution:Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02139 USA
Abstract:Bioluminescence is broadly distributed in marine dinoflagellates and has been intensively studied in Lingulodinium ( Gonyaulax ) polyedra. In this species, bioluminescence is regulated in a circadian fashion; the enzyme (luciferase) and the luciferin (substrate)-binding protein are synthesized and degraded on a daily basis. Synthesis of both proteins is regulated at the level of translation. The L. polyedra luciferase gene is composed of three contiguous domains that are greater than 75% identical at the nucleic acid level. Possible explanations for the high degree of sequence conservation include: (1) the domains evolved through a recent duplication event; (2) the sequence similarity is maintained by a molecular process such as gene conversion; or (3) there is a functional role associated with the primary nucleic acid sequence, such as in the translational regulation of luciferase expression. The phylogenetic relationship of dinoflagellates predicted from 18S rDNA genes provides a framework for examining the molecular evolution of the regulation of luciferase expression and of genes encoding luciferase and the luciferin-binding protein. In particular, we are examining the evolution of the circadian rhythm of bioluminescence and of luciferase abundance, the presence/absence of the luciferin-binding protein, and the molecular structure of the luciferase gene. We anticipate that this approach will distinguish between regions of the luciferase molecule that are conserved for enzyme function versus those concerned with the regulation of protein expression. In addition, it will provide insight into the evolution of the regulatory processes and pathways.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号