首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Initiation of Protein Synthesis Without Formylation in a Mutant of Escherichia coli That Grows in the Absence of Tetrahydrofolate
Authors:Barbara R Baumstark  Linda L Spremulli  Uttam L RajBhandary  and Gene M Brown
Abstract:Starting from a p-aminobenzoate-requiring strain of Escherichia coli (E. coli K-12 AB3292), we have isolated mutants that can grow in the absence of p-aminobenzoate (and thus tetrahydrofolate). The following lines of evidence suggest that at least one of these mutants is capable of initiating protein synthesis without formylation of methionyl-transfer ribonucleic acid (methionyl-tRNA(fMet)). (i) tRNA isolated (and charged in vivo with (35)S]methionine) from this mutant grown in a p-aminobenzoate-free medium contained less than 0.4% of the total methionine charged to the tRNA as formylmethionine. However, when the mutant was grown in the presence of p-aminobenzoate, 40 to 50% of the total (35)S]methionine was detected as formylmethionine. (ii) Extracts of the mutant grown in the absence of p-aminobenzoate contained no formyl-tetrahydrofolate, but such extracts did contain formylatable methionyl-tRNA and a functional transformylase. (iii) Tetrahydrofolate-free extracts of the mutant were capable of supporting protein synthesis with viral RNA (from f2) as messenger, but the resulting synthesized proteins contained no formylmethionine, and methionine residues were detected where formylmethionine residues are normally found. In the presence of formyl-tetrahydrofolate, use of a similar extract resulted in the detection of 30 to 40% of the total polypeptide methionine as formylmethionine. (iv) Initiation of protein synthesis in vitro occurred more readily with formyl-tetrahydrofolate-free extracts of the mutant than with similar extracts prepared from the parent strain. However, in the presence of formyl-tetrahydrofolate, initiation of protein synthesis proceeded equally well with both kinds of extracts. tRNA from this mutant and another spontaneously derived mutant was found to be partially deficient in the modified nucleoside ribothymidine (rT). Analysis of extracts showed that the mutants contained decreased levels of the methylase that results in the formation of ribothymidine. In vivo studies with an independently isolated rT(-) strain suggest that the lack of rT in tRNA facilitates the growth of E. coli under conditions where protein synthesis is forced to take place without formylation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号