首页 | 本学科首页   官方微博 | 高级检索  
     


MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance
Authors:Staubitz Petra  Neumann Heinz  Schneider Tanja  Wiedemann Imke  Peschel Andreas
Affiliation:Cellular and Molecular Microbiology, Medical Microbiology Department, University of Tübingen, Elfriede-Aulhorn-Str. 6, D-72076 Tübingen, Germany.
Abstract:Frequently bacteria are exposed to membrane-damaging cationic antimicrobial molecules (CAMs) produced by the host's immune system (defensins, cathelicidins) or by competing microorganisms (bacteriocins). Staphylococcus aureus achieves CAM resistance by modifying anionic phosphatidylglycerol with positively charged L-lysine, resulting in repulsion of the peptides. Inactivation of the novel S. aureus gene, mprF, which is found in many bacterial pathogens, has resulted in the loss of lysylphosphatidylglycerol (L-PG), increased inactivation by CAM-containing neutrophils, and attenuated virulence. We demonstrate here that expression of mprF is sufficient to confer L-PG production in Escherichia coli, which indicates that MprF represents the L-PG synthase. L-PG biosynthesis was studied in vitro and found to be dependent on phosphatidylglycerol and lysyl-tRNA, two putative substrate molecules. Further addition of cadaverin, a competitive inhibitor of the lysyl-tRNA synthetases, or of RNase A abolished L-PG biosynthesis, thereby confirming the involvement of lysyl-tRNA. This study forms the basis for further detailed analyses of L-PG biosynthesis and its role in bacterial infections.
Keywords:Staphylococcus aureus    Defensin    Innate immunity    Phospholipid
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号