首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of differentially regulated francisella tularensis genes by use of a newly developed Tn5-based transposon delivery system
Authors:Buchan Blake W  McLendon Molly K  Jones Bradley D
Affiliation:Department of Microbiology, University of Iowa School of Medicine, 51 Newton Road, Iowa City, IA 52242-1109, USA.
Abstract:Francisella tularensis is the etiologic agent of an intracellular systemic infection of the lymphatic system in humans called tularemia. The organism has become the subject of considerable research interest due to its classification as a category A select agent by the CDC. To aid genetic analysis of this pathogen, we have constructed a temperature-sensitive Tn5-based transposon delivery system that is capable of generating chromosomal reporter fusions with lacZ or luxCDABE, enabling us to monitor gene expression. Transposition is catalyzed by the hyperactive Tn5 transposase, whose expression is driven by the Francisella groES promoter. When high-temperature selection (42 degrees C) is applied to a bacterial culture carrying the transposon delivery plasmid, approximately 0.1% of the population is recovered with Tn5 insertions in the chromosome. Nucleotide sequence analysis of a sample of mutants revealed that the insertions occur randomly throughout the chromosome. The kanamycin-selectable marker of the transposon is also flanked by FLP recombination target sequences that allow deletion of the antibiotic resistance gene when desired. This system has been used to generate transposon mutant libraries for the F. tularensis live vaccine strain as well as two different virulent F. tularensis strains. Chromosomal reporters delivered with the transposon were used to identify genes upregulated by growth in Chamberlain's defined medium. Genes in the fsl operon, reported to be involved in iron acquisition, as well as genes in the igl gene cluster were among those identified by the screen. Further experiments implicate the ferric uptake regulator (Fur) protein in the negative regulation of fsl but not igl reporters, which occurs in an iron-dependent manner. Our results indicate that we have created a valuable new transposon that can be used to identify and characterize virulence genes in F. tularensis strains.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号