首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A generalized theory of particulate electron conduction enzymes applied to cytochrome oxidase. A theory of coupled electron and/or ion transport applied to pyruvate carboxylase
Authors:Freeman W Cope
Institution:1. Biochemistry Division, Aviation Medical Acceleration Laboratory, Johnsville, Pa
Abstract:A previously developed theory of particulate electron conduction enzymes was based on a model of an enzyme particle catalyzing the oxidation-reduction of two different substrates at two different enzymatic sites on the same particle with conduction of electrons between the two sites through the enzyme particle. Using the simplifying assumption that the percent reduction of the second substrate is held constant, there was previously shown to be a hyperbolic relationship between the first order rate constant (k′) and the sum (C x ) of oxidized plus reduced substrate, of the formk′=α/(C x +β), where α and β are positive constants. It is shown here that if this simplifying assumption is omitted, a positive constant is added to the right hand side of this equation, which describes exactly the experimental data of Smith and conrad on cytochrome oxidase. If electron transport is assumed to be coupled to ion transport, this equation becomesk′=(α/C x ) (where γ is a positive constant) which describes the experimental data of Eadie and Gale on pyruvic carboxylase of yeast. It seems probable that the same theory is applicable to coupled ion-ion transport and coupled electron-electron transport in both membranous systems, and in particulate preparations consisting of membrane fragments.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号