首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ultrastructure,polypeptide composition and photochemical activity of chloroplasts during foliar senescence of a non-yellowing mutant genotype of Festuca pratensis Huds.
Authors:Howard Thomas
Institution:(1) Welsh Plant Breeding Station, Plas Gogerddan, SY23 3EB Aberystwyth, UK
Abstract:A study was made of the structure and function of senescent chloroplasts from a non-yellowing (NY) mutant of Festuca pratensis. Electron microscopy suggested that the stroma matrix was destroyed but that thylakoid membranes persisted in a loose, unstacked condition. By contrast, chloroplasts from the normal (Y) genotype lost both stroma and recognizable thylakoid systems. Fraction 1, the major protein of the stroma, disappeared from Y and NY at similar rates during senescence. The activities of photosystems I and II from NY also declined at a similar rate to Y photosystems. Polypeptides of chloroplast membranes were separated by SDS gel electrophoresis into at least 30 components. There was considerable heterogeneity in rates of breakdown of the different protein species of the membranes. Of the five major polypeptide components, two had kinetics of breakdown similar to those of stroma proteins and were lost from NY and Y at about the same rate, whereas the remaining three (one of which was tentatively identified as the apoprotein of the light-harvesting chlorophyll-protein complex) were more stable in NY than in Y. These results are discussed in relation to the mechanism and function of chloroplast disintegration during leaf senescence.Abbreviations RuDPC ribulose diphosphate carboxylase - NY and Y non-yellowing and normal genotypes of Festuca, respectively - PSI and PSII photosystems I and II, respectively - SDS sodium dodecyl sulphate - MW molecular weight - CF coupling factor
Keywords:Chloroplast  Festuca  Membrane  Photosynthesis  Senescence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号