首页 | 本学科首页   官方微博 | 高级检索  
     


Hypoxia-induced irreversible S-phase arrest involves down-regulation of cyclin A
Authors:Seim J  Graff P  Amellem O  Landsverk K S  Stokke T  Pettersen E O
Affiliation:Department of Physics, the Biophysic group, University of Oslo,;Dynal Biotech ASA and;Department of Biophysics, The Norwegian Radium Hospital, Oslo, Norway
Abstract:We have studied hypoxia-induced cell cycle arrest in human cells where the retinoblastoma tumour suppressor protein (pRB) is either functional (T-47D cells) or abrogated by expression of the HPV18 E7 oncoprotein (NHIK 3025 cells). All cells in S phase are immediately arrested upon exposure to extreme hypoxia. During an 18-h extreme hypoxia regime, the cyclin A protein level is down-regulated in cells of both types when in S-phase, and, as we have previously shown, pRB re-binds in the nuclei of all T-47D cells (Amellem et al. 1996). Hence, pRB is not necessary for the down-regulation of cyclin A during hypoxia. However, our findings indicate that re-oxygenation cannot release pRB from its nuclear binding following this prolonged exposure. The result is permanent S-phase arrest even after re-oxygenation, and this is correlated with a complete and permanent down-regulation of cyclin A in the pRB functional T-47D cells. In contrast, both cell cycle arrest and cyclin A down-regulation in S phase are reversed upon re-oxygenation in non-pRB-functional NHIK 3025 cells after prolonged exposure to extreme hypoxia. Our results indicate that pRB is involved in permanent S-phase arrest and down-regulation of cyclin A after extreme hypoxia.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号