首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A rapid phospholipase D assay using zirconium precipitation of anionic substrate phospholipids: application to n-acylethanolamine formation in vitro
Authors:Petersen G  Chapman K D  Hansen H S
Institution:Department of Pharmacology, Royal Danish School of Pharmacy, DK-2100 Copenhagen, Denmark.
Abstract:Activation of phospholipase D (PLD) is involved in a number of signal transduction pathways in eukaryotic cells. The most common method for determination of PLD activity in vitro involves incubation with a radiolabeled substrate and lipid extraction followed by thin-layer chromatography in order to separate and quantify substrate and product(s). A more rapid assay can be used when utilizing phosphatidylcholine as a substrate because one of the products, choline, is water soluble and therefore easily separated from the substrate. However, this separation principle is not applicable in evaluating N-acylphosphatidylethanolamine (NAPE)-hydrolyzing PLD activity, which produces two lipophilic products, N-acylethanolamine (NAE) and phosphatidic acid. Therefore, we developed a rapid assay for the routine detection of NAPE-hydrolyzing PLD activity. This assay is based on precipitation of radiolabeled substrate (NAPE) in the presence of ZrOCl(2), followed by quantification of radiolabeled NAE released into a methanolic supernatant. The precipitation involves a chemical reaction of the zirconyl cation with the phosphate anion. Conditions were optimized for the complete precipitation of NAPE, whereas N-acyllysophosphatidylethanolamine and glycerophospho(N-acyl)ethanolamine were precipitated at least 95%. Furthermore, this precipitation method can be extended to assays of other anionic phospholipid-hydrolyzing PLD activities by selecting an optimal pH of the precipitation solution. For example, 98;-99% precipitation of phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylserine was achieved.Consequently, this new assay allows for a convenient examination of PLD activities toward a variety of phospholipid substrates, and in particular allows for the analysis of NAE formation from NAPE in vitro, a feature that will facilitate a more complete biochemical characterization of this anandamide-generating enzyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号