首页 | 本学科首页   官方微博 | 高级检索  
     


Enzymatic basis of macrophage activation. Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes
Authors:S Tsunawaki  C F Nathan
Abstract:To compare the kinetics of the O-2-generating enzyme in nonactivated and activated macrophages and granulocytes from the mouse peritoneal cavity, we sought conditions in which the activity of this enzyme in cell lysates was comparable to that in intact cells. Pretreatment of macrophages with 10 mM diethyldithiocarbamate inhibited endogenous superoxide dismutase by 70% and enhanced O-2 secretion up to 15-fold, so that it was comparable to H2O2 secretion. O-2 secretion was terminated by detergent lysis and reconstituted by addition of NAD(P)H to the lysates. Optimal detection of O-2 production in lysates depended on prior stimulation of the respiratory burst, lysis with 0.05% deoxycholate rather than any of 4 other detergents or sonication, acetylation of the cytochrome c used as an indicator, and addition of NADPH rather than NADH. Kinetic analysis using NADPH-reconstituted deoxycholate lysates, together with spectra of oxidized and reduced cells, failed to reveal either marked differences in the Vmax of the O-2-generating enzyme or correlations between O-2 secretion and cytochrome b559 content among 5 macrophage populations whose H2O2 secretion ranged from 0 to 365 nmol/90 min/mg of protein. In contrast, the Km of the oxidase for NADPH varied markedly and inversely with the capacity of the intact cells to secrete O-2 or H2O2: J774G8 histiocytoma cells, 1.43 mM; resident macrophages, 0.41 mM; proteose peptone-elicited macrophages, 0.20 mM; casein-activated macrophages, 0.05 mM; NaIO4-activated macrophages, 0.05 mM; and granulocytes, 0.04 mM. These results suggest that macrophage activation, a process that enhances oxygen-dependent antitumor and antimicrobial functions, may equip the cell to secrete increased amounts of reactive oxygen intermediates largely by increasing the affinity of the oxidase for NADPH.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号