Sensitivity of the cross-correlation between simulated surface EMGs for two muscles to detect motor unit synchronization. |
| |
Authors: | Kevin G Keenan Dario Farina Fran?ois G Meyer Roberto Merletti Roger M Enoka |
| |
Affiliation: | Dept. of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA. |
| |
Abstract: | The purpose of the study was to evaluate the use of cross-correlation analysis between simulated surface electromyograms (EMGs) of two muscles to quantify motor unit synchronization. The volume conductor simulated a cylindrical limb with two muscles and bone, fat, and skin tissues. Models of two motor neuron pools were used to simulate 120 s of surface EMG that were detected over both muscles. Short-term synchrony was established using a phenomenological model that aligned the discharge times of selected motor units within and across muscles to simulate physiological levels of motor unit synchrony. The correlation between pairs of surface EMGs was estimated as the maximum of the normalized cross-correlation function. After imposing four levels of motor unit synchrony across muscles, five parameters were varied concurrently in the two muscles to examine their influence on the correlation between the surface EMGs: 1) excitation level (5, 10, 15, and 50% of maximum); 2) muscle size (350 and 500 motor units); 3) fat thickness (1 and 4 mm); 4) skin conductivity (0.1 and 1 S/m); and 5) mean motor unit conduction velocity (2.5 and 4 m/s). Despite a constant and high level of motor unit synchronization among pairs of motor units across the two muscles, the cross-correlation index ranged from 0.08 to 0.56, with variation in the five parameters. For example, cross-correlation of EMGs from pairs of hand muscles, each having thin layers of subcutaneous fat and mean motor unit conduction velocities of 4 m/s, may be relatively insensitive to the level of synchronization across muscles. In contrast, cross-correlation of EMGs from pairs of leg muscles, with larger fat thickness, may exhibit a different sensitivity. These results indicate that cross correlation of the surface EMGs from two muscles provides a limited measure of the level of synchronization between motor units in the two muscles. |
| |
Keywords: | |
|
|