首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transmural and apicobasal gradients in repolarization contribute to T-wave genesis in human surface ECG
Authors:Okada Jun-Ichi  Washio Takumi  Maehara Akiko  Momomura Shin-Ichi  Sugiura Seiryo  Hisada Toshiaki
Institution:#381 Environmental Bldg., Kashiwa Campus, The Univ. of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan. okada@sml.k.u-tokyo.ac.jp
Abstract:The cellular basis of the T-wave morphology of surface ECG remains controversial in clinical cardiology. We examined the effect of action potential duration (APD) distribution on T-wave morphology using a realistic model of the human ventricle and torso. We developed a finite-element model of the ventricle consisting of ~26 million elements, including the conduction system, each implemented with the ion current model of cardiomyocytes. This model was embedded in a torso model with distinct organ structures to obtain the standard ECG leads. The APD distribution was changed in the transmural direction by locating the M cells in either the endocardial or epicardial region. We also introduced apicobasal gradients by modifying the ion channel parameters. Both the transmural gradient (with M cells on the endocardial side) and the apicobasal gradient produced positive T waves, although a very large gradient was required for the apicobasal gradient. By contrast, T waves obtained with the transmural gradient were highly symmetric and, therefore, did not represent the true physiological state. Only combination of the transmural and the moderate apicobasal gradients produced physiological T waves in surface ECG. Positive T waves in surface ECG mainly originated from the transmural distribution of APD with M cells on the endocardial side, although the apicobasal gradient was also required to attain the physiological waveform.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号