首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional compatibility of elongation factors between mammalian mitochondrial and bacterial ribosomes: characterization of GTPase activity and translation elongation by hybrid ribosomes bearing heterologous L7/12 proteins
Authors:Terasaki Maki  Suzuki Tsutomu  Hanada Takao  Watanabe Kimitsuna
Institution:Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bldg. FSB-301, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Chiba Prefecture, Japan.
Abstract:The mammalian mitochondrial (mt) ribosome (mitoribosome) is a bacterial-type ribosome but has a highly protein-rich composition. Almost half of the rRNA contained in the bacterial ribosome is replaced with proteins in the mitoribosome. Escherichia coli elongation factor G (EF-G Ec) has no translocase activity on the mitoribosome but EF-G mt is functional on the E.coli ribosome. To investigate the functional equivalency of the mt and E.coli ribosomes, we prepared hybrid mt and E.coli ribosomes. The hybrid mitoribosome containing E.coli L7/12 (L7/12 Ec) instead of L7/12 mt clearly activated the GTPase of EF-G Ec and efficiently promoted its translocase activity in an in vitro translation system. Thus, the mitoribosome is functionally equivalent to the E.coli ribosome despite their distinct compositions. The mt EF-Tu-dependent translation activity of the E.coli ribosome was also clearly enhanced by replacing the C-terminal domain (CTD) of L7/12 Ec with the mt counterpart (the hybrid E.coli ribosome). This strongly indicates that the CTD of L7/12 is responsible for EF-Tu function. These results demonstrate that functional compatibility between elongation factors and the L7/12 protein in the ribosome governs its translational specificity.
Keywords:L7/12  mitochondrial ribosome  EF-G  EF-Tu  GTP hydrolysis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号