Engineering the nifH Promoter Region and Abolishing Poly-β-Hydroxybutyrate Accumulation in Rhizobium etli Enhance Nitrogen Fixation in Symbiosis with Phaseolus vulgaris |
| |
Authors: | Humberto Peralta, Yolanda Mora, Emmanuel Salazar, Sergio Encarnaci n, Rafael Palacios, Jaime Mora |
| |
Affiliation: | Humberto Peralta, Yolanda Mora, Emmanuel Salazar, Sergio Encarnación, Rafael Palacios, and Jaime Mora |
| |
Abstract: | Rhizobium etli, as well as some other rhizobia, presents nitrogenase reductase (nifH) gene reiterations. Several R. etli strains studied in this laboratory showed a unique organization and contained two complete nifHDK operons (copies a and b) and a truncated nifHD operon (copy c). Expression analysis of lacZ fusion demonstrated that copies a and b in strain CFN42 are transcribed at lower levels than copy c, although this copy has no discernible role during nitrogen fixation. To increase nitrogenase production, we constructed a chimeric nifHDK operon regulated by the strong nifHc promoter sequence and expressed it in symbiosis with the common bean plant (Phaseolus vulgaris), either cloned on a stably inherited plasmid or incorporated into the symbiotic plasmid (pSym). Compared with the wild-type strain, strains with the nitrogenase overexpression construction assayed in greenhouse experiments had, increased nitrogenase activity (58% on average), increased plant weight (32% on average), increased nitrogen content in plants (15% at 32 days postinoculation), and most importantly, higher seed yield (36% on average), higher nitrogen content (25%), and higher nitrogen yield (72% on average) in seeds. Additionally, expression of the chimeric nifHDK operon in a poly-β-hydroxybutyrate-negative R. etli strain produced an additive effect in enhancing symbiosis. To our knowledge, this is the first report of increased seed yield and nutritional content in the common bean obtained by using only the genetic material already present in Rhizobium. |
| |
Keywords: | |
|
|