首页 | 本学科首页   官方微博 | 高级检索  
     


The molecular chaperone, alpha-crystallin, inhibits amyloid formation by apolipoprotein C-II.
Authors:D M Hatters  R A Lindner  J A Carver  G J Howlett
Affiliation:Department of Biochemistry and Molecular Biology, the University of Melbourne, Parkville, Victoria 3010, Australia.
Abstract:Under lipid-free conditions, human apolipoprotein C-II (apoC-II) exists in an unfolded conformation that over several days forms amyloid ribbons. We examined the influence of the molecular chaperone, alpha-crystallin, on amyloid formation by apoC-II. Time-dependent changes in apoC-II turbidity (at 0.3 mg/ml) were suppressed potently by substoichiometric subunit concentrations of alpha-crystallin (1-10 microg/ml). alpha-Crystallin also inhibits time-dependent changes in the CD spectra, thioflavin T binding, and sedimentation coefficient of apoC-II. This contrasts with stoichiometric concentrations of alpha-crystallin required to suppress the amorphous aggregation of stressed proteins such as reduced alpha-lactalbumin. Two pieces of evidence suggest that alpha-crystallin directly interacts with amyloidogenic intermediates. First, sedimentation equilibrium and velocity experiments exclude high affinity interactions between alpha-crystallin and unstructured monomeric apoC-II. Second, the addition of alpha-crystallin does not lead to the accumulation of intermediate sized apoC-II species between monomer and large aggregates as indicated by gel filtration and sedimentation velocity experiments, suggesting that alpha-crystallin does not inhibit the relatively rapid fibril elongation upon nucleation. We propose that alpha-crystallin interacts stoichiometrically with partly structured amyloidogenic precursors, inhibiting amyloid formation at nucleation rather than the elongation phase. In doing so, alpha-crystallin forms transient complexes with apoC-II, in contrast to its chaperone behavior with stressed proteins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号