首页 | 本学科首页   官方微博 | 高级检索  
     


Structural basis for both pro- and anti-inflammatory response induced by mannose-specific legume lectin from Cymbosema roseum
Authors:Rocha Bruno A M  Delatorre Plinio  Oliveira Taianá M  Benevides Raquel G  Pires Alana F  Sousa Albertina A S  Souza Luis A G  Assreuy Ana Maria S  Debray Henri  de Azevedo Walter F  Sampaio Alexandre H  Cavada Benildo S
Affiliation:a BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, P. O. Box 6043, 60.455-970 Fortaleza, Ceará, Brazil
b Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil
c Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Brazil
d Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus, Amazonas, Brazil
e Laboratoire de Chimie Biologique et Unité Mixte de Recherche N° 8576 du CNRS, Université des Sciences et Technologies de Lille, Lille, France
f Faculdade de Biociências, Centro de Pesquisas em Biologia Molecular e Funcional, PUCRS, Porto Alegre, Brazil
g Biomol-Mar, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Brazil
h Program de Pós-Graduação em Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Brazil
Abstract:Legume lectins, despite high sequence homology, express diverse biological activities that vary in potency and efficacy. In studies reported here, the mannose-specific lectin from Cymbosema roseum (CRLI), which binds N-glycoproteins, shows both pro-inflammatory effects when administered by local injection and anti-inflammatory effects when by systemic injection. Protein sequencing was obtained by Tandem Mass Spectrometry and the crystal structure was solved by X-ray crystallography using a Synchrotron radiation source. Molecular replacement and refinement were performed using CCP4 and the carbohydrate binding properties were described by affinity assays and computational docking. Biological assays were performed in order to evaluate the lectin edematogenic activity. The crystal structure of CRLI was established to a 1.8 Å resolution in order to determine a structural basis for these differing activities. The structure of CRLI is closely homologous to those of other legume lectins at the monomer level and assembles into tetramers as do many of its homologues. The CRLI carbohydrate binding site was predicted by docking with a specific inhibitory trisaccharide. CRLI possesses a hydrophobic pocket for the binding of α-aminobutyric acid and that pocket is occupied in this structure as are the binding sites for calcium and manganese cations characteristic of legume lectins. CRLI route-dependent effects for acute inflammation are related to its carbohydrate binding domain (due to inhibition caused by the presence of α-methyl-mannoside), and are based on comparative analysis with ConA crystal structure. This may be due to carbohydrate binding site design, which differs at Tyr12 and Glu205 position.
Keywords:Mannose-specific lectin   Inflammation   X-ray crystallography
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号