首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cost-benefit relationships in sclerophyllous leaves of the ‘Bana’ vegetation in the Amazon region
Authors:M A Sobrado
Institution:(1) Laboratorio de Biología Ambiental de Plantas, Departamento de Biología de Organismos, Universidad Simón Bolívar, Apartado Postal 89000, Caracas, 1080 A, Venezuela
Abstract:This study estimated the construction const (CC) and maintenance cost (MC) of leaf tissue on the basis of dry mass (CCMass, MCMass) and leaf area (CCArea, MCArea), as well as the maximum leaf gas exchange capacity, so as to examine leaf cost:benefit relationship in six dominant species of the ‘Bana’ vegetation. Minimum and maximum CCMass averaged 1.71 ± 0.03 and 1.78 ± 0.03 g glucose g−1. The CCMass showed a statistically significant positive correlation with crude fibre, and tended to decline as leaves were larger. Thus, smaller leaves tended to be built out of a more expensive material than that found in species bearing larger leaves. The average CCArea of the ‘Bana’ species was 376 ± 15 g glucose m−2. A robust correlation was found between CCArea with leaf dry mass to leaf area ratio, as well as with leaf thickness, but not with leaf density. MCMass (g glucose g−1 day−1) and MCArea (g glucose m−2 day−1) were positively correlated. Maximum and minimum MCMass increased significantly with protein and lipid content, respectively. Maximum carbon assimilation (A max) was positively correlated with CCArea. All the species operated at high stomatal conductance (g s) and C i/C a which suggested low short-term water use efficiency. Potential nitrogen use efficiency (PNUE = A max/N) averaged 35.4 ± 1.8 mmol CO2 mol−1 N. As the sclerophylly index (g crude fibre g−1 protein) increased, the ratio of CCArea to A max increased significantly. This result suggests a trade-off between investments in an expensive resistant sclerophyllous leaf which should maximize carbon gain in the long term.
Keywords:Construction cost  Maintenance cost  Nitrogen use efficiency  Photosynthesis  Water use efficiency  White sand vegetation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号