Research Advances on Apoptosis Caused by Quantum Dots |
| |
Authors: | Qingling Zhan Meng Tang |
| |
Affiliation: | 1. Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, Jiangsu Province, People’s Republic of China 2. Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, Jiangsu Province, People’s Republic of China
|
| |
Abstract: | Recently, quantum dots (QDs) have been widely applied in biological and biomedical fields such as cell labeling, living tissue imaging, and photodynamic therapy because of their superior optical properties. Meanwhile, the potential biological negative effects and/or toxic effects of QDs have become increasingly important, especially the cytotoxicity caused by QDs. One of the common cytotoxicity when living organisms are treated with QD is apoptosis, where many attempts have been made to explain the mechanisms of apoptosis caused by QDs’ use. One of the mechanisms is the production of cadmium ion (Cd2+) and reactive oxygen species (ROS). Excess generation of ROS will result in oxidative stress that would mediate apoptosis. Furthermore, the activation of cell death receptors and mitochondria-dependent such as B cell lymphoma 2 (Bcl-2) family and the caspase family could onset apoptosis. Signal transduction such as some classical signal pathways of PI3K-AKT, NF-E2-related factor 2 (Nrf2)-antioxidant response element (ARE), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa B (NF-κB) also plays an important role in the regulation of apoptosis. Several ways to reduce the apoptotic rate have been introduced, such as surface modification, controlling, the dose, size, and exposure time of QDs as well as using antioxidants or inhibitors. In this review, we attempted to review the most recent findings associated with apoptosis caused by QDs so as to provide some guidelines for a safer QD application in the future. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|