Characterization of hydroxylaminobenzene mutase from pNBZ139 cloned from Pseudomonas pseudoalcaligenes JS45. A highly associated SDS-stable enzyme catalyzing an intramolecular transfer of hydroxy groups. |
| |
Authors: | Z He L J Nadeau J C Spain |
| |
Affiliation: | Air Force Research Laboratory, Tyndall Air Force Base, FL 32403, USA. |
| |
Abstract: | Hydroxylaminobenzene mutase is the enzyme that converts intermediates formed during initial steps in the degradation of nitrobenzene to a novel ring-fission lower pathway in Pseudomonas pseudoalcaligenes JS45. The mutase catalyzes a rearrangement of hydroxylaminobenzene to 2-aminophenol. The mechanism of the reactions and the properties of the enzymes are unknown. In crude extracts, the hydroxylaminobenzene mutase was stable at SDS concentrations as high as 2%. A procedure including Hitrap-SP, Hitrap-Q and Cu(II)-chelating chromatography was used to partially purify the enzyme from an Escherichia coli clone. The partially purified enzyme was eluted in the void volume of a Superose-12 gel-filtration column even in the presence of 0.05% SDS in 25 mM Tris/HCl buffer, which indicated that it was highly associated. When the enzymatic conversion of hydroxylaminobenzene to 2-aminophenol was carried out in 18O-labeled water, the product did not contain 18O, as determined by GC-MS. The results indicate that the reaction proceeded by intramolecular transfer of the hydroxy group from the nitrogen to the C-2 position of the ring. The mechanism is clearly different from the intermolecular transfer of the hydroxy group in the non-enzymatic Bamberger rearrangement of hydroxylaminobenzene to 4-aminophenol and in the enzymatic hydroxymutation of chorismate to isochorismate. |
| |
Keywords: | |
|
|