首页 | 本学科首页   官方微博 | 高级检索  
     


Microfilament disruption in a noncycling organized tissue, the corneal endothelium, initiates mitosis
Authors:Gordon Sheldon R
Affiliation:Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4476, USA. srgordon@oakland.edu
Abstract:The adult corneal endothelium represents a noncycling cell population that resides as a monolayer on its basement membrane, Descemet's membrane. Evidence is presented for the first time, showing that mitotic regulation in this organized tissue, residing on its natural basement membrane, is coupled to microfilament integrity. When mitotically quiescent rat corneal endothelia are organ cultured in medium containing serum and cytochalasin B, low levels of mitosis are initiated. Supplementing the culture medium with either insulin or IGF-2 augments this response and results in increased cell density within the tissue monolayer. Fluorescence microscopy of actin using TRITC-conjugated phalloidin revealed that cellular circumferential microfilament bundles appear unaffected by cytochalasin B treatment, whereas the cytoplasmic microfilaments appear to be completely disrupted. These results suggest the possibility that the actin cytoskeleton is involved with the regulation of cell growth in the corneal endothelium.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号