Abstract: | The biological response of cultured 7-day embryonic chick tibiae to small alternating currents induced by pulsed magnetic fields (PMFs) was investigated. It was found that continuous exposure to PMFs over 7 days did not alter the overall DNA content of rudiments nor the incorporation of 3H-thymidine when compared with control tibiae. The overall collagen content of explants was slightly reduced by PMF exposure whilst the incorporation of 3H-proline was significantly suppressed. The synthesis of sulphated glycosaminoglycans was also measured in terms of 35SO4--incorporation, but PMF treatment failed to alter the levels of isotope incorporation. These results suggest that, whereas noncollagenous, and possibly collagenous, protein synthesis is affected by PMF exposure, glycosaminoglycan synthesis is not. Histological and electron microscopical observations substantiated this interpretation and revealed selective inhibition of matrix secretion in the periphery of the proliferative epiphyseal zones in experimental explants. High-power electron microscope examination of these zones showed that PMF-exposed matrix was sparsely invested with fibrous protein while elements of the stellate reticulum had formed large aggregates which were often clumped about the cell membrane. The results are discussed in terms of the possible role of naturally occurring potentials in the development and maintenance of connective tissue systems such as cartilage and bone. |