首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular Basis of Force Development by Skeletal Muscles During and After Stretch
Authors:Dilson E Rassier
Institution:* Department of Kinesiology and Physical Education, Faculty of Education, McGill University, 475 Pine Avenue West, Montreal (PQ), Canada - H4W 1S4. Email: dilson.rassier@mcgill.ca; phone: 514-2984184, ext 0558
Abstract:When activated skeletal muscles are stretched at slow velocities, force increases in two phases: (i) a fast increase, and (ii) a slow increase. The transition between these phases is commonly associated with the mechanical detachment of cross-bridges from actin. This phenomenon is referred to asforce enhancement during stretch. After the stretch, force decreases and reaches steady-state at levels that are higher than the force produced at the corresponding length during purely isometric contractions. This phenomenon is referred to asresidual force enhancement.The mechanisms behind the increase in force during and after stretch are still a matter of debate, and have physiological implications as human muscles perform stretch contractions continuously during daily activity. This paper briefly reviews the potential mechanisms to explain stretch forces, including an increased number of cross-bridges attached to actin, an increased strain in cross-bridges upon stretch, the influence of passive elements upon activation and sarcomere length non-uniformities.
Keywords:force enhancement  cross-bridge kinetics  pre-powerstroke  titin  sarcomere
点击此处可从《Molecular & cellular biomechanics : MCB》浏览原始摘要信息
点击此处可从《Molecular & cellular biomechanics : MCB》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号