首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ultrastructure of the epidermis of the lizard (Lacerta vivipara) at the resting stage of the sloughing cycle
Authors:Susan V  Bryant  A S Breathnach  and A d'A  Bellairs
Institution:Department of Anatomy, St. Mary's Hospital Medical School, London
Abstract:The ultrastructure of the epidermis of the lizard ( Lacerta vivipara ) one day after sloughing is described. The non-keratinized layers of the epidermis are essentially similar in structure to those of amphibians and mammals. The cells of the basal layer are not however separated from each other by the large spaces described in the amphibian (Farquhar & Palade, 1965). The middle layers of the epidermis at this stage of the sloughing cycle produce neither the characteristic mucous granules found in amphibians nor the keratohyalin granules of mammals. A small number of granules corresponding in size and location to the "Odland bodies" of both mammalian and amphibian epidermis are, however, present. The intermediate layer cells also contain a number of bodies similar in appearance to those described by Farquhar & Palade as lysosomes in amphibian skin. These structures are both osmium iodide and acid phosphatase positive. Unlike the condition in amphibians and mammals, the cytoplasm of cells in the layer immediately beneath the keratinized strata is honeycombed with small vesicles, and contains large irregular vacuoles of uncertain content. Certain nonkeratinizing elements within the epidermis are tentatively interpreted as nerve terminations. Two morphologically distinct keratinized strata can be distinguished, the inner stratum consisting of flattened cells similar to those of the stratum corneum of mammalian epidermis; individual cell outlines cannot be distinguished in the outer stratum, which has a structure similar to that of avian feather keratin. A shallow surface zone of the outer keratinized stratum has been identified as the Oberhautchen. This consists of longitudinally disposed leaflets or laminae which are responsible for the sculptured pattern of the epidermal surface. The observations reported here provide a basis for analysis of changes occurring at other stages of the sloughing cycle.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号