首页 | 本学科首页   官方微博 | 高级检索  
     


ESR characterization of a novel spin-trapping agent, 15N-labeled N-tert-butyl-alpha-phenylnitrone,as a nitric oxide donor
Authors:Saito Kieko  Yoshioka Hisashi
Affiliation:Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan. saitok@smail.u-shizuoka-ken.ac.jp
Abstract:We previously found that one of the pharmacological effects of N-tert-butyl-alpha-phenylnitrone (PBN) is the release of nitric oxide (NO) under oxidative conditions. However, to confirm this hypothesis in vivo, NO released from PBN must be distinguished from NO produced in biological systems, and therefore we undertook the synthesis of PBN using labeled 15N to identify its corresponding 15NO in vivo. The properties were examined with an ESR spectrometer. To synthesize 15N-PBN, the starting material, ammonium-15N chloride, was converted to 2-amino-15N-2-methylpropane, oxidized to 2-methyl-2-nitropropane-15N, and finally reacted with benzaldehyde to give 15N-PBN. The final product was purified by repeated sublimation. With ferrous sulfate-methyl glucamine dithiocarbamate complex, Fe (MGD)2, as a trapping agent to measure the NO levels of 15N-PBN or 14N-PBN in vitro, the peak intensity of 15NO[Fe(MGD)2] was over 50% stronger than that of 14NO[Fe(MGD)2], and that 15NO and 14NO had the corresponding two-and three line hyperfine structures due to their nuclear spin quantum numbers. Subsequently, the ESR spectrum of 15NO derived from 15N-PBN was significantly different than that of lipopolysaccharide (LPS)-induced NO, which was derived from biological cells, and therefore we have demonstrated the possibility to distinguish 15NO from PBN and 14NO generated from cells. These results suggested that 15N-PBN is a useful molecule, not only as a spin-trapping agent, but also as an NO donor to explore the pharmacological mechanisms of PBN in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号