首页 | 本学科首页   官方微博 | 高级检索  
     


The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity
Authors:Krystal?Matthews,Alexandra?Sch?fer,Alissa?Pham,Matthew?Frieman  author-information"  >  author-information__contact u-icon-before"  >  mailto:mfrieman@som.umaryland.edu"   title="  mfrieman@som.umaryland.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:1.Department of Microbiology and Immunology,University of Maryland at Baltimore,Baltimore,USA;2.Department of Epidemiology,University of North Carolina,Chapel Hill,USA;3.Department of Microbiology,Icahn School of Medicine at Mt. Sinai,New York,USA;4.Department of Pathology,NYU Langone Medical Center,New York,USA
Abstract:

Background

The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction.

Methods

We have used plasmids expressing PLpro and IRF3 including an IRF3 mutant that is constitutively active, called IRF3(5D). In these experiments we utilize transfections, chromatin immunoprecipitation, Electro-mobility Shift Assays (EMSA) and protein localization to identify where IRF3 and IRF3(5D) are inhibited by PLpro.

Results

Here we show that PLpro also inhibits IRF3 activation at a step after phosphorylation and that this inhibition is dependent on the de-ubiquitination (DUB) activity of PLpro. We found that PLpro is able to block the type I IFN induction of a constitutively active IRF3, but does not inhibit IRF3 dimerization, nuclear localization or DNA binding. However, inhibition of PLpro’s DUB activity by mutagenesis blocked the IRF3 inhibition activity of PLpro, suggesting a role for IRF3 ubiquitination in induction of a type I IFN innate immune response.

Conclusion

These results demonstrate an additional mechanism that PLpro is able to inhibit IRF3 signaling. These data suggest novel innate immune antagonism activities of PLpro that may contribute to SARS-CoV pathogenesis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号