首页 | 本学科首页   官方微博 | 高级检索  
   检索      


On the derivation and tuning of phase oscillator models for lamprey central pattern generators
Authors:Péter L Várkonyi  Tim Kiemel  Kathleen Hoffman  Avis H Cohen  Philip Holmes
Institution:Department of Mechanics, Materials and Structures, Budapest University of Technology and Economics, Muegyetem rkp. 1-3, 1111, Budapest, Hungary. vpeter@mit.bme.hu
Abstract:Using phase response curves and averaging theory, we derive phase oscillator models for the lamprey central pattern generator from two biophysically-based segmental models. The first one relies on network dynamics within a segment to produce the rhythm, while the second contains bursting cells. We study intersegmental coordination and show that the former class of models shows more robust behavior over the animal's range of swimming frequencies. The network-based model can also easily produce approximately constant phase lags along the spinal cord, as observed experimentally. Precise control of phase lags in the network-based model is obtained by varying the relative strengths of its six different connection types with distance in a phase model with separate coupling functions for each connection type. The phase model also describes the effect of randomized connections, accurately predicting how quickly random network-based models approach the determinisitic model as the number of connections increases.
Keywords:Phase reduction  Lamprey  Intersegmental coordination  Bursting  Network effect
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号