首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Safety and efficacy of adeno-associated viral vector-mediated insulin gene transfer via portal vein to the livers of streptozotocin-induced diabetic Sprague-Dawley rats
Authors:Park Young Mi  Woo Seonock  Lee Geun Taek  Ko Ji-Yun  Lee Yongho  Zhao Zheng-Shan  Kim Hye Joo  Ahn Chul Woo  Cha Bong Soo  Kim Kyung-Sup  Park Cheol Won  Lee Hyun Chul
Institution:Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul 120-752, Korea.
Abstract:BACKGROUND: Previous studies demonstrating the efficacy of insulin gene therapy have mostly involved use of adenoviral vectors or naked DNA to deliver the insulin gene. However, this procedure may not guarantee long-term insulin production. To improve the performance, we prepared recombinant adeno-associated viral vectors (rAAV) harboring the gene encoding a furin-modified human insulin under the cytomegalovirus (CMV) promoter rAAV-hPPI(F12)]. METHODS: Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats were used as a diabetic animal model. The levels of blood glucose, insulin, and HbA1c were measured to test the effect. An intraperitoneal glucose tolerance test was performed to test the capability of blood glucose disposal. Immunohistochemical staining and Northern blot analyses were performed to survey the expression pattern of the therapeutic insulin gene. RESULTS: STZ-induced diabetic Sprague-Dawley rats infused via the portal vein with rAAV-hPPI(F12) produced human insulin and after a 6-h fast were normoglycemic for over 90 days post-treatment, whereas diabetic rats treated with recombinant adenoviral vector harboring the hPPI(F12) gene rAV-hPPI(F12)] were normoglycemic only for days 3 to 13 post-treatment. Insulin mRNA was detected mainly in the liver of the rAAV-hPPI(F12)-treated diabetic rats. The glucose tolerance capability of the rAAV-hPPI(F12)-treated diabetic rats was comparable to that of non-diabetic rats, even without injection of recombinant insulin. Furthermore, blood HbA1c concentrations in rAAV-hPPI(F12)-treated diabetic rats were reduced to almost the normal level. Importantly, studies of rAV or rAAV vector-dependent side effects on the targeted liver strongly suggested that only rAAV treatment caused no side effects. CONCLUSIONS: These results demonstrate that our rAAV-mediated in vivo insulin gene therapy provides safer maintenance of the insulin gene expression required for long-term and thus more effective blood glycemic control.
Keywords:diabetes mellitus  basal insulin  gene therapy  recombinant viral vectors
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号