首页 | 本学科首页   官方微博 | 高级检索  
   检索      


RHEOTROPISM IN FISHES
Authors:G P ARNOLD
Institution:Fisheries Laboratory, Lowestoft, Suffolk
Abstract:(1) The fluid properties of air and water enable animals to orientate to flow and this behaviour in water is termed rheotaxis. Fish, however, have a wide range of responses to currents, extending beyond simple orientation, and the term rheotropism is therefore used as a ‘portmanteau’ word to describe all such reactions. (2) Fish detect currents directly by flow over the body surface or indirectly by other stimuli. Indirect responses are more common and occur in response to visual, tactile and inertial stimuli resulting from displacement of the fish by the current. Reactions to displacement of visual images are called optomotor reactions. The lateral line is not involved except in the detection of small localized jets of water. It has not been demonstrated that any fish can detect the current by electrical stimuli, although it is theoretically possible for some to do so. (3) In the basic form of rhotaxis the fish heads upstream and maintains station by stemming the current. Current detection thresholds fall within the range 0.4 to 10 cm/s for tactile stimuli but may be as low as 0.03 cm/s for visual stimuli. (4) Visual responses have been studied by simulating displacement by the current in optomotor apparatus. Fish respond to a rotating black-and-white-striped background by compensatory movements of the head and eyes - optokinetic nystagmus - or by the optomotor reaction, in which the fish swims with the background. (5) Fish show an orthokinesis in optomotor apparatus, their mean swimming speed increasing with the speed of rotation of the background. The precise form of the relationship varies between species and there is also considerable individual variation in performance. Fish accelerate and decelerate relative to the background, fixating on a particular stripe for short periods. (6) Factors limiting the appearance of the optomotor response are contrast, illuminance, acuity, critical flicker fusion frequency and spectral sensitivity. (7) Fish tolerate retinal image movements equivalent to those received when they are carried forwards by the current but not to those received when they are carried backwards. There are ganglion cells in the optic tectum which are sensitive to the direction of movement of targets across the visual field. In the goldfish there are significantly more units sensitive to movements in the temporo-nasal than in the opposite direction. (8) There are close parallels between the behaviour of fish in schools and in an optomotor apparatus. The optomotor response is apparently innate, occurring in newly hatched fry. (9) Physical and chemical factors can modify rheotaxis. Temperature and olfactory stimuli affect both the sign of the taxis and the kinetic component of the behaviour. (10) Thyroid hormones which are involved in the control of migration have been shown to affect the kinetic component of rheotaxis. (11) Fish show a number of hydrodynamic adaptations to life in currents. Morphological modifications are greatest in fish from torrential streams, which show extreme dorsoventral flattening and have specialized adhesive organs. Other fish select areas of low velocity or decrease their buoyancy with increasing current speed. (12) Rheotropic behaviour plays an important role in the distribution of fish within stream systems, in the maintenance of territory and station and in feeding behaviour. Territory, station and spawning sites in salmonids are all selected in relation to water velocity. (13) Water currents are thought to provide either a transport system or directional clues for fish on migration. The fish either does not respond to the current and is carried passively downstream, or it makes an orientated movement, swimming up- or downstream. (14) Eggs and larvae are known to drift passively downstream from their spawning grounds and some adult fish may also drift passively. In the sea both adult and juvenile fish use a form of modulated drift associated with vertical migration. Fish move up into midwater either by direct tidal selection or in relation to the diel cycle of illuminance. In fresh water the downstream migrations of salmonid fry, and smolts under some conditions, occur by modulated drift. (15) There is no evidence that fish migrating in the sea orientate to the current, but in fresh water the upstream migrations of diadromous fish are clearly orientated movements. (16) Water velocity is a major factor for salmonids migrating upstream. For fry it limits the occurrence of upstream migrations and for adults it can also prevent upstream movement. But migrations are often initiated by freshets, and changing water velocity is thought to be the most important factor associated with a freshet. (17) Both environmental and genetic factors affect the direction of migration in relation to the current. In some sockeye salmon fry direction is determined by temperature, but in others the overall direction of movement is genetically determined and environmental factors only modify the behaviour. (18) Rheotropic behaviour has a number of important practical applications in the capture of fish and in guiding them past dams and power stations. (19) The optomotor response plays a basic role in the capture of roundfish by trawls under conditions when the fish can see the gear. Many fish are caught because they become fatigued after a prolonged period of swimming at the same speed as the trawl. (20) Most success in guiding fish away from hazardous areas and bypassing them round dams has been achieved with mechanical barriers which depend on rheotropic reactions of the fish. (21) Louvre screens are very successful in deflecting juvenile salmonids migrating downstream past small dams but are impracticable at large dams. Instead, the turbine intakes are commonly sited at a considerable depth and fish are bypassed by mechanical screens either at the surface of the forebay or into the gatewells immediately upstream of the turbine intakes. (22) With upstream migrants the basic problem is to attract fish to the lower end of the fishways. An adequate ‘attraction velocity’ is an important feature of fishways, which must be sited so that the fish avoid the high velocity discharges from spillways and turbines.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号