首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Caprylic acid precipitation method for impurity reduction: An alternative to conventional chromatography for monoclonal antibody purification
Authors:Brodsky Yan  Zhang Cheng  Yigzaw Yinges  Vedantham Ganesh
Institution:Purification Process Development, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 98119; telephone: +1-206-265-7443; fax: (206) 217-0491. brodskyy@amgen.com.
Abstract:We report the use of caprylic acid based impurity precipitation as (1) an alternative method to polishing chromatography techniques commonly used for monoclonal antibody purification and (2) an impurity reduction step prior to harvesting the bioreactor. This impurity reduction method was tested with protein A purified antibodies and with cell culture fluid. First, the operational parameters influencing precipitation of host cell proteins and high molecular weight aggregate in protein A pools were investigated. When used as a polishing step, the primary factor affecting purification and yield was determined to be pH. Caprylic acid precipitation was comparable to polishing IEX chromatography in reducing host cell protein and aggregate levels. A virus reduction study showed complete clearance of a model retrovirus during caprylic acid precipitation of protein A purified antibody. Caprylic acid mediated impurity precipitation in cell culture showed that the impurity clearance was generally insensitive to pH and caprylic acid concentration whereas yield was a function of caprylic acid concentration. Protein A purification of caprylic acid precipitated cell culture fluid generated less turbid product pool with reduced levels of host cell proteins and high molecular weight aggregate. The results of this study show caprylic acid precipitation to be an effective purification method that can be incorporated into a production facility with minimal cost as it utilizes existing tanks and process flow. Eliminating flow through chromatography polishing step can provide process intensification by avoiding the process tank volume constraints for high titer processes. Biotechnol. Bioeng. 2012; 109: 2589–2598. © 2012 Wiley Periodicals, Inc.
Keywords:caprylic acid  purification  impurity precipitation  mAb process development
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号