首页 | 本学科首页   官方微博 | 高级检索  
     


Investigating a back door mechanism of actin phosphate release by steered molecular dynamics
Authors:Wriggers W  Schulten K
Affiliation:Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA. wriggers@ucsd.edu
Abstract:In actin-based cell motility, phosphate (Pi) release after ATP hydrolysis is an essential biochemical process, but the actual pathway of Pi separation from actin is not well understood. We report a series of molecular dynamics simulations that induce the dissociation of Pi from actin. After cleavage from ATP, the singly protonated phosphate (HPO4(2-)) rotates about the ADP-associated Ca2+ ion, turning away from the negatively charged ADP towards the putative exit near His73. To reveal the microscopic processes underlying the release of Pi, adhesion forces were measured when pulling the substrate out of its binding pocket. The results suggest that the separation from the divalent cation is the rate-limiting step in Pi release. Protonation of HPO4(2-) to H2PO4- lowers the electrostatic barrier during Pi liberation from the ion. The simulations revealed a propensity of charged His73+ to form a salt bridge with HPO4(2-), but not with H2PO4-. His73 stabilizes HPO4(2-) and, thereby, inhibits rapid Pi release from actin. Arg177 remains attached to Pi along the putative back door pathway, suggesting a shuttle function that facilitates the transport of Pi to a binding site on the protein surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号