首页 | 本学科首页   官方微博 | 高级检索  
     


Expression of tomato SlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins
Authors:Shichao Xin  Guohong Yu  Linlin Sun  Xiaojing Qiang  Na Xu  Xianguo Cheng
Affiliation:1. Key Lab of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Street, Zhongguancun, Beijing, 100081, China
2. College of Land and Environment, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866, Liaoning, China
Abstract:Three independent transgenic Arabidopsis lines expressing SlTIP2;2 from Solanum lycopersicum L. cv. Lichun under the control of its endogenous promoter were used to analyze the expression of SlTIP2;2 and the salt stress tolerance under NaCl concentration gradient treatment. The expression patterns of SlTIP2;2 were shown to be tissue-specific and NaCl dose-dependent under salt stress. SlTIP2;2-transformed Arabidopsis plants exhibited enhanced salt stress tolerance, and the physiological parameters suggested that SlTIP2;2 has close links with the ion homeostasis and antioxidant enzymes activities in salt-stressed transgenic Arabidopsis. Moreover, SlTIP2;2 expression significantly affected the Na+ and K+ fluxes from the root meristematic zones and resulted in remarkable changes in the morphology of the pith ray cells in the inflorescence stems of transgenic Arabidopsis. Based on the yeast growth assay, β-galactosidase activity testing and bimolecular fluorescence complementation, SlTIP1;1, SlTIP2;1 and an UDP-galactose transporter were confirmed to interact with SlTIP2;2, which may greatly broaden our understanding of the physiological functions of aquaporins.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号