Efficient deformation algorithm for plasmid DNA simulations |
| |
Authors: | Adriano N Raposo Abel JP Gomes |
| |
Affiliation: | Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal, Av. Marquês Dávila e Bolama, 6200-001 Covilhã, Portugal |
| |
Abstract: | BackgroundPlasmid DNA molecules are closed circular molecules that are widely used in life sciences, particularly in gene therapy research. Monte Carlo methods have been used for several years to simulate the conformational behavior of DNA molecules. In each iteration these simulation methods randomly generate a new trial conformation, which is either accepted or rejected according to a criterion based on energy calculations and stochastic rules. These simulation trials are generated using a method based on crankshaft motion that, apart from some slight improvements, has remained the same for many years.ResultsIn this paper, we present a new algorithm for the deformation of plasmid DNA molecules for Monte Carlo simulations. The move underlying our algorithm preserves the size and connectivity of straight-line segments of the plasmid DNA skeleton. We also present the results of three experiments comparing our deformation move with the standard and biased crankshaft moves in terms of acceptance ratio of the trials, energy and temperature evolution, and average displacement of the molecule. Our algorithm can also be used as a generic geometric algorithm for the deformation of regular polygons or polylines that preserves the connections and lengths of their segments.ConclusionCompared with both crankshaft moves, our move generates simulation trials with higher acceptance ratios and smoother deformations, making it suitable for real-time visualization of plasmid DNA coiling. For that purpose, we have adopted a DNA assembly algorithm that uses nucleotides as building blocks. |
| |
Keywords: | Plasmid DNA Simulation Monte Carlo |
|
|