首页 | 本学科首页   官方微博 | 高级检索  
     


Single molecule sequencing and genome assembly of a clinical specimen of Loa loa,the causative agent of loiasis
Authors:Luke J Tallon  Xinyue Liu  Sasisekhar Bennuru  Marcus C Chibucos  Alvaro Godinez  Sandra Ott  Xuechu Zhao  Lisa Sadzewicz  Claire M Fraser  Thomas B Nutman  Julie C Dunning Hotopp
Affiliation:.Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA ;.Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA ;.Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD USA
Abstract:

Background

More than 20% of the world’s population is at risk for infection by filarial nematodes and >180 million people worldwide are already infected. Along with infection comes significant morbidity that has a socioeconomic impact. The eight filarial nematodes that infect humans are Wuchereria bancrofti, Brugia malayi, Brugia timori, Onchocerca volvulus, Loa loa, Mansonella perstans, Mansonella streptocerca, and Mansonella ozzardi, of which three have published draft genome sequences. Since all have humans as the definitive host, standard avenues of research that rely on culturing and genetics have often not been possible. Therefore, genome sequencing provides an important window into understanding the biology of these parasites. The need for large amounts of high quality genomic DNA from homozygous, inbred lines; the availability of only short sequence reads from next-generation sequencing platforms at a reasonable expense; and the lack of random large insert libraries has limited our ability to generate high quality genome sequences for these parasites. However, the Pacific Biosciences single molecule, real-time sequencing platform holds great promise in reducing input amounts and generating sufficiently long sequences that bypass the need for large insert paired libraries.

Results

Here, we report on efforts to generate a more complete genome assembly for L. loa using genetically heterogeneous DNA isolated from a single clinical sample and sequenced on the Pacific Biosciences platform. To obtain the best assembly, numerous assemblers and sequencing datasets were analyzed, combined, and compared. Quiver-informed trimming of an assembly of only Pacific Biosciences reads by HGAP2 was selected as the final assembly of 96.4 Mbp in 2,250 contigs. This results in ~9% more of the genome in ~85% fewer contigs from ~80% less starting material at a fraction of the cost of previous Roche 454-based sequencing efforts.

Conclusions

The result is the most complete filarial nematode assembly produced thus far and demonstrates the utility of single molecule sequencing on the Pacific Biosciences platform for genetically heterogeneous metazoan genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-788) contains supplementary material, which is available to authorized users.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号