Protein degradation in lemna with particular reference to ribulose bisphosphate carboxylase: I. The effect of light and dark |
| |
Authors: | Ferreira R B Davies D D |
| |
Affiliation: | School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom. |
| |
Abstract: | Ribulose bisphosphate carboxylase from Lemna minor resembles the structure reported for the enzyme from other plants. When grown in the light, the enzyme appears to undergo little or no degradation, as measured by a double-isotope method. This situation is similar to that reported for wheat and barley, but is unlike that reported for maize, where the enzyme degrades at the same rate as total protein. Prolonged periods of darkness usually induce leaf senescence, characterized by the rapid degradation of chlorophyll and protein, with ribulose bisphosphate carboxylase undergoing preferential degradation. In L. minor there is selective protein degradation in the dark, but chlorophyll and ribulose bisphosphate carboxylase are stable when fronds are kept in the darkness for up to 8 days. It appears that Lemna is not programmed to senesce, or at least that darkness does not induce senescence in Lemna. Although there is no evidence for in vivo degradation or modification of ribulose bisphosphate carboxylase during prolonged periods of darkness, extracts from fronds which have been kept in the dark for periods in excess of 24 hours convert ribulose bisphosphate carboxylase to a more acidic form. The properties of the dark-induced system which acts on ribulose bisphosphate carboxylase, suggest that it may be a mixed function oxidase. The proposition that the selectivity of protein degradation is genetically determined, so that the rate at which a protein is degraded is determined by its charge or size, was tested for fronds grown in the light or maintained in the dark. There was no significant correlation between protein degradation and either charge or size, in light or dark. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|