Pathogenesis of cleft palate in TGF-beta3 knockout mice. |
| |
Authors: | Y Taya S O'Kane M W Ferguson |
| |
Affiliation: | Division of Cells, Immunology and Development, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK. |
| |
Abstract: | We previously reported that mutation of the transforming growth factor-beta3 (TGF-beta3) gene caused cleft palate in homozygous null (-/-) mice. TGF-beta3 is normally expressed in the medial edge epithelial (MEE) cells of the palatal shelf. In the present study, we investigated the mechanisms by which TGF-beta3 deletions caused cleft palate in 129 x CF-1 mice. For organ culture, palatal shelves were dissected from embryonic day 13.5 (E13.5) mouse embryos. Palatal shelves were placed singly or in pairs on Millipore filters and cultured in DMEM/F12 medium. Shelves were placed in homologous (+/+ vs +/+, -/- vs -/-, +/- vs +/-) or heterologous (+/+ vs -/-, +/- vs -/-, +/+ vs +/-) paired combinations and examined by macroscopy and histology. Pairs of -/- and -/- shelves failed to fuse over 72 hours of culture whereas pairs of +/+ (wild-type) and +/+ or +/- (heterozygote) and +/-, as well as +/+ and -/- shelves, fused within the first 48 hour period. Histological examination of the fused +/+ and +/+ shelves showed complete disappearance of the midline epithelial seam whereas -/- and +/+ shelves still had some seam remnants. In order to investigate the ability of TGF-beta family members to rescue the fusion between -/- and -/- palatal shelves in vitro, either recombinant human (rh) TGF-beta1, porcine (p) TGF-beta2, rh TGF-beta3, rh activin, or p inhibin was added to the medium in different concentrations at specific times and for various periods during the culture. In untreated organ culture -/- palate pairs completely failed to fuse, treatment with TGF-beta3 induced complete palatal fusion, TGF-beta1 or TGF-beta2 near normal fusion, but activin and inhibin had no effect. We investigated ultrastructural features of the surface of the MEE cells using SEM to compare TGF-beta3-null embryos (E 12. 5-E 16.5) with +/+ and +/- embryos in vivo and in vitro. Up to E13.5 and after E15.5, structures resembling short rods were observed in both +/+ and -/- embryos. Just before fusion, at E14.5, a lot of filopodia-like structures appeared on the surface of the MEE cells in +/+ embryos, however, none were observed in -/- embryos, either in vivo or in vitro. With TEM these filopodia are coated with material resembling proteoglycan. Interestingly, addition of TGF-beta3 to the culture medium which caused fusion between the -/- palatal shelves also induced the appearance of these filopodia on their MEE surfaces. TGF-beta1 and TGF-beta2 also induced filopodia on the -/- MEE but to a lesser extent than TGF-beta3 and additionally induced lamellipodia on their cell surfaces. These results suggest that TGF-beta3 may regulate palatal fusion by inducing filopodia on the outer cell membrane of the palatal medial edge epithelia prior to shelf contact. Exogenous recombinant TGF-beta3 can rescue fusion in -/- palatal shelves by inducing such filopodia, illustrating that the effects of TGF-beta3 are transduced by cell surface receptors which raises interesting potential therapeutic strategies to prevent and treat embryonic cleft palate. |
| |
Keywords: | |
|
|