首页 | 本学科首页   官方微博 | 高级检索  
     


The mechanism of bile salt-induced hemolysis.
Authors:L Mrówczyńska  J Bielawski
Affiliation:Department of Cytology and Histology, A. Mickiewicz University, Fredry 10, 61-701 Poznan, Poland.
Abstract:The hemolytic activities of sodium deoxycholate (DChol) and its tauro-conjugate (TDChol) and glyco-conjugate (GDChol) were analysed. 50 % hemolysis occurred in 30 min at pH 7.3, at the concentrations of these detergents equal to 0.044, 0.042 and 0.040 % respectively. These values are below their critical micellar concentrations. Based on its kinetics, this hemolysis is classified as being of permeability type. The detergents increase the permeability of erythrocyte membranes to KCl, and colloid osmotic hemolysis occurs. The minimum of hemolytic activity of the three cholates is at about pH 7.5. A very high increase in hemolytic activity occurs at pHs below 6.8, 6.5 and 6.2 for DChol, TDChol, and GDChol, respectively. These values are close to the pK(a) for DChol (6.2), but much higher than the pK(a) for TDChol (1.9) and GDChol (4.8). It is therefore suggested that the increase in hemolytic activity is not a result of the protonation of the anionic groups of the cholates. At acidification below pH 6, the kinetics of DChol induced hemolysis change to the damage type characterised by nonselective membrane permeability. Such a transition is not observed in TDChol and GDChol induced hemolysis. It is therefore suggested that the change in the type of hemolysis depends on protonation of the anionic group of cholates.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号