首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonas putida
Authors:Duque E  Segura A  Mosqueda G  Ramos J L
Institution:Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, C/Profesor Albareda 1, E-18008 Granada, Spain.
Abstract:Pseudomonas putida DOT-T1E grows on a water-toluene double liquid phase. Toluene tolerance in this microorganism is mainly achieved by at least two efflux pumps that belong to the RND family. The TtgDEF efflux pump is induced by toluene, whereas the other efflux pump, called TtgABC, is expressed at a high level in cells not exposed to toluene and at a lower level in cells grown with toluene. The ttgR gene is adjacent to the ttgABC operon and is transcribed divergently from ttgA. The expression level of ttgR was fourfold higher in cells growing in the presence of toluene than in its absence. In a TtgR-deficient background, expression from the ttgA promoter increased about 20-fold, suggesting that TtgR represses expression from the ttgA promoter. In this mutant, background expression of the ttgR gene was also much higher than in the wild-type background; however, its level of expression increased in the presence of toluene. In a ttgR mutant background, expression from the ttgD promoter followed the same pattern of expression as in the wild type. Analysis of a P. putida pTn5cat mutant that exhibited increased sensitivity to a sudden toluene shock, regardless of whether or not it was previously exposed to low toluene concentrations, revealed that pTn5cat had interrupted an lrp-like gene. The ttgR gene was expressed at very high levels in this mutant, with concomitant repression of expression of the ttgABC operon. The second ttgDEF efflux pump was expressed at low levels in this mutant strain, suggesting that the Lrp-like protein is a global regulatory protein involved in the solvent-tolerant response of this strain.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号