首页 | 本学科首页   官方微博 | 高级检索  
     


CDC25B acts as a potential target of PRKACA in fertilized mouse eggs
Authors:Cui Cheng  Zhao Hongmei  Zhang Zhe  Zong Zhihong  Feng Chen  Zhang Yang  Deng Xin  Xu Xiaoyan  Yu Bingzhi
Affiliation:Department of Physiology, China Medical University, Shenyang 110001, China.
Abstract:Protein kinase A (PRKACA) has been documented as a pivotal regulator in meiosis and mitosis arrest. Although our previous work has established that PRKACA regulates cell cycle progression of mouse fertilized eggs by inhibiting M-phase promoting factor (MPF), little is known about the intermediate factor between PRKACA and MPF in the mitotic cell cycle. In this study, we investigated the role of the PRKACA/CDC25B pathway on the early development of mouse fertilized eggs. Overexpression of unphosphorylatable CDC25B mutant (Cdc25b-S321A or Cdc25b-S229A/S321A) rapidly caused G2-phase eggs to enter mitosis. Microinjection of either Cdc25b-WT or Cdc25b-S229A mRNA also promoted G2/M transition, but much less efficiently than Cdc25b-S321A and Cdc25b-S229A/S321A. Moreover, mouse fertilized eggs overrode the G2 arrest by microinjection of either Cdc25b-S321A or Cdc25b-S229A/S321A mRNA, which efficiently resulted in MPF activation by directly dephosphorylating CDC2A-Tyr15, despite culture under conditions that maintained exogenous dibutyryl cAMP. Using a highly specific antibody against phospho-Ser321 of CDC25B in Western blotting, we showed that CDC25B-Ser321 was phosphorylated at the G1 and S phases, whereas Ser321 was dephosphorylated at the G2 and M phases in vivo. Our findings identify CDC25B as a potential target of PRKACA and show that PRKACA regulates G2/M transition by phosphorylating CDC25B-Ser321 but not CDC25B-Ser229 on the first mitotic division of mouse fertilized eggs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号